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Algebraically Special Spacetimes
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The Newman-Penrose formalism for algebraically special spacetimes, with or
without twist, is recast in terms of weighted quantities defined at conformal nuli
infinity J*. Weighted differential operators, also defined at J*, are introduced
that are special cases of those defined in a recent extension of the Geroch-Held-
Penrose formalism. The “solution,” including spin coefficients, Weyl tensor
components, and reduced equations, is expressed rather concisely in terms of
these weighted variables and operators. Its form invariance under the remaining
freedom in the choice of tetrad and coordinate system now becomes evident.

1. INTRODUCTION

Partia! “‘solutions” to Einstein’s field equations and corresponding
reduced gravitational field equations (that is, the equations yet to be solved
after certain radial integrations have been made) were obtained for algebrai-
cally special spacetimes with twisting rays about two decades ago by various
authors. For vacuum they were derived by Kerr (1963), Debney et al. (1969),
Robinson ef al. (1969), and Talbot (1969). Their results were generalized
by Lind (1974) and Trim and Wainwright (1974) to the nonvacuum case,
but only for a certain class of Ricci tensors. I considered a slightly bigger
class of Ricci tensors (Ludwig, 1978), but the “solution” reduced to that
of Trim and Wainwright (1974).

The “solution” obtained, including the metric, spin coefficients, and
components of the Weyl and Ricci tensors, is a fairly messy combination
of integration “constants” and their nonradial derivatives. By just looking
at the results, their invariance under the remaining freedom in the choice
of frame, i.e., under a certain combined transformation of the spinor dyad
(or, equivalently, the tetrad), the coordinate system, and the initial data is
far from obvious. I intend to reformulate these results in terms of properly
weighted scalar functions and differential operators defined at conformal
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null infinity. In particular, the differential operators, when acting on properly
weighted scalar functions, transform as properly weighted quantities under
arbitrary diagonal transformations (Ludwig, 1986, 1988) of the spinor dyad,
transformations which include both Lorentz and conformal ones. These
operators are actually special cases of those defined in a recent extension
of the Geroch-Held-Penrose formalism (Ludwig, 1988). The present refor-
mulation makes it possible to exhibit the ‘“‘solution” not only in a very
concise form, but also in a way that makes its variance under the remaining
choice of frame self-evident.

The “solution” was obtained in Ludwig (1978) with the aid of Penrose’s
conformal technique (Penrose, 1968). By rescaling the metric, the spacetime
(M, g.,) was transformed, subject to a number of assumptions, to an
unphysical space (M, §,,) with boundary (a local J*). The frame, including
spinor dyad, coordinate system, and conformal factor, was chosen at J ™ at
the outset. The Newman-Penrose equations (Newman and Penrose, 1962;
Pirani, 1965) were then integrated along ingoing shear-free null geodesics
and the results converted back to physical spacetime. All integration “con-
stants” appeared as quantities defined on J'. By using the remaining
freedom in the choice of frame, the twist X, assumed to be nonzero, was
put equal to unity. In the present reformulation I reverse this choice and
let £ have arbitrary values, including zero.

The notation follows that of previous papers (Ludwig, 1978; 1986).
Careted quantities refer to the rescaled space M, uncareted ones refer to
spacetime M. Superscripts on a careted variable denote the appropriate
coefficient in the expansion of that variable in powers of the conformal
factor (); superscripts on an uncareted variable similarly refer to the
expansion of that variable in powers of p and p, where p is a suitable
spin-coefficient. The usual symbols are used for the Newman-Penrose
quantities (Newman and Penrose, 1962; Pirani, 1965). Their transformation
properties under general Lorentz and conformal transformations are found
in the literature (Ludwig, 1986).

2. THE CHOICE OF FRAME
The spinor dyad and conformal factor can be so chosen on J* such that
A0=20=0, @°=-B°=18mp, =-11°=1AlnP (1)

and
70 (2)

where P is any positive function on J*. Such a Type I frame (Ludwig, 1976,
1978), which includes an associated Bondi coordinate system, is, however,
inappropriate for considerations of twist.
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More appropriate is a Type II frame, whose construction I now review.
Starting with any Type I frame, we first perform a null rotation

04=04~ Ly, La=ta (3)
with L so chosen that ¢° vanishes. The relations given by (1) are still valid
for the new dyad, but

7%= PA° (%) (4)

Dropping all primes from now on, consider the congruence of null geodesics
whose tangent vector at J* is

ko= 06aba (5)

This congruence is clearly asymptotically shear free.

Next, extend the Bondi coordinate system (u, &, &) of J* associated
with the Type I frame to all of M by demanding that these coordinates not
change along the members of the null geodesic congruence. For the remain-
ing coordinate take the conformal factor (), which is so chosen that

Rep=0 (6)

The twist = of the congruence is —Im p. We propagate the tetrad into the
interior of M in such a way that

A

R=g=#+7=0 (7)

are satisfied identically. In the physical spacetime M we use, instead,
coordinates (u, r, , {), where r is related to Q by the equation
1
V==
r+3? ®)

In Ludwig (1978), I “solved” the Newman-Penrose equations in such
a Type Il frame under the assumption that the above null geodesic con-
gruence is not only asymptotically shear free, but shear free throughout the
space, i.e.,
G=0 9)
identically. It was further assumed that the tangent vectors to these null
geodesics are repeated principal null vectors of the Weyl tensor, i.e.,

\I’O = ‘I’l = O (10)
and that the Ricci tensor satisfies

A=¢00=0 (11)
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The solution obtained depends on the initial data
P,L,Re ¥{", ®(} (12)

The freedom in the choice of the original Type I frame is the (general-
ized) Newman-Unti (Ludwig, 1976, 1978) freedom. When translated to a
Type II frame this becomes, in the unphysical space M, a coordinate change

=G, =0, =00, Q=6a (13a)

where ‘
0=G(=G,) (13b)
accompanied by the diagonal transformation
diag(@~%e®, @/?e") (13c)
of the spinor dyad, where
et = %i: Z—i (14)

The corresponding freedom in the physical spacetime is given by
w=Gw ), =00, =00, r=07"r (15)
for the coordinate system and the transformation
diag(@'%e™, @712 71%) (15b)

for the spinor dyad. The initial data must at the same time be changed
according to
dy’
P'=PO7'|—=
F
G\
L= ( L+2PO" —) e
T4

sy . (16)
Re V(' =07° Re ¥{"

4y ~4 (4
QJ(“)=® ':I)gl)

3. WEIGHTED QUANTITIES
If under the permissible change of frame given by equations (13)-(16)

a quantity n(u, ¢, £) transforms as
Tl!____@WeZiS(bT’ (17)

we say that n is a properly weighted quantity with weights (W, S). Of
course, the conjugate quantity then has weights (W, —S).
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Next, let us define, on J*, properly weighted differential operators
80,82, A% by

§0=8°+288°+H(W—8)7°
50=5°—284°+(W+S)5° (18)
A0=A— wg°

They have respective weights (—1,1), (~1,—1), and ( 1,0). Thus, for
example, if 7 is a scalar field with welghts (W S), then §° .m transforms as
a weighted function with weights (W —1, S+1).

The commutators of these operators can be worked out directly. They
are given by

(850~ 5°8% n = —2i3A% + n[2SU°+2iWAS]

(A282- 827 =(W=5)i’y

(and the equation conjugate to the latter), with v°, U°, and 3 as defined
in the next section.

The transformations of the spinor dyads, in both M and M, as given
by equations (13c) and (15b), are special cases of a general diagonal
transformation diag(a, d), whose consequences were discussed in depth in
a recent extension (Ludwig, 1988) of the Geroch-Held-Penrose (GHP)
formalism. For weighted quantities of either space, M or M, we can express
the weights W and S in terms of the more general weights defined by

n'=a’a’d'dyn (20)

for an arbitrary diagonal transformation. The present formalism is a
specialization of the extended GHP formalism of Ludwig (1988), albeit a
different specialization for quantities defined on M and quantities defined
on M.

With the aid of equation (13c), we see that for weighted quantities
defined on M we have

W=-ir+s+t+u)
(21)
S=Hr—s—t+u)

e., W is the conformal weight and S is the spin weight (Ludwig, 1988).
The operators of equation (18) are those of Ludwig (1988) when specialized
to the particular diagonal transformation given by equation (13c). This can
be readily established with the aid of equations (1), (7), and (21). The
commutator equations, too, equations (19), follow from the more general
ones given in that paper.
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For weighted quantities defined in the physical spacetime M the weights
(W, S) are given by
=3(r+s—t—u)

=yr—s—t+u) (22)

as is readily seen with the aid of equation (15b). Thus, W is the boost weight
and S the spin weight. In fact, the general formalism of Ludwig (1988)
applied to quantities defined in M reduces to a special case of the GHP
(Geroch et al., 1973) formalism. It is a special case because the boost-rotation
of equation (15b) is restricted by equation (14). As a result, not only are
the spin coeflicients p, u, 7, and =, properly weighted quantities, but so is
the spin coeflicient e. However, [ will present the variables in M in Newman-
Penrose rather than GHP notation, at the expense of having to deal with
some variables which are not properly weighted.

4. AUXILIARY QUANTITIES

The “solution” of the field equations depends only on the initial data
P, L, Re ¥V, and ®{, which are functions of the coordinates #, £, and {’
of J*. But it is advisable, for the sake of brevity, to introduce some auxiliary
quantities. Although all of these are quantities defined on J*, some of them
will not carry a caret, since they appear as coeflicients in the expansion of
some spacetime variable in terms of the spin coefficients p and g.

First let us recall from Ludwig (1978) that we may define the operators
5, 60 and A° and the spin coefficients 7°, @°, and A° (and their conjugates)
by

go=-12_2pl
ou 74
Ro=2
ou
rof L
= PAO(F> (23)

Although none of these are weighted quantities, the equations themselves
are. These operators and §<p1n coefficients play their major role in the
definition of the operators §°, 52, and A%.
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Next let us define

A, E 2 L
2iT=Pps°( — —PSO(—)
! <P> P

U°®=Re[8%(F°—24°%) —2&°%(7°—24)] (24)
0= A%(F°—24°%)+ 4%7F°—24°)

(and similarly for #°). These are properly weighted quantities with respective
weights (—1,0), (-2,0), and (-2, —1), as can be determined with the aid
of equations (13), (16), and (23). Note that X is the imaginary part of —p
and therefore the twist of the null geodesic congruence.

Further, we define the following auxiliary quantities and their complex
conjugates in terms of properly weighted quantities defined on J*. These
auxiliary variables, which will appear as coefficients in the expansion of
the variable whose name they carry, are themselves properly weighted. This
is so since each term in their definition has the same weight. Table I gives
a summary of these weights. For the conjugate variables the spin weight S
changes to —S.

Im ¥4V = Re(-2X U+ §°87%)
TP = —iSy'+ 5 U°+iA%%s
L GEPR TS
W = 37§ 80s
@) =35005"

o) =507

O = -2i(55) DY

Py = —521/0

v = o -
Y = 500 +4iw P35S
YO = 500 P+ 617508
W = 24905032

VO = - 5208

TP = 50 +2id R8s
W) = 5205 +4id$ s
VD = 6idg)50s
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Table I

Quantity w S Quantity w S

Q 1 0 v, o) -5 -1

A% 3 -1 0 &L -6 -1

U -2 0 Py -3 -2

gy -3 0 v —4 -2

Y -4 0 TP g -5 )

5° -1 -1 v, v ~6 -2

»° -2 -1 LSRR S ~7 -2

v -3 -1 P -8 -2
v, of) -4 -

5. THE “SOLUTION”

One can exhibit the “solution” of the field equations for algebraically
special spacetimes in a rather concise manner in terms of these auxiliary
quantities, which themselves depend only on the initial data, defined on
J™, and their derivatives tangential to J*. Although this “solution’ has been
obtained elsewhere (Trim and Wainwright, 1974; Ludwig, 1978), it takes
considerable effort to transcribe it into the present formalism. The results

are as follows.

Spin Coefficients:

O=k=0=¢g=mg=71=)

1
r—ix

p:

a=p(- &)

B =pa’

y=—30"In P—3p"¥" +p%p @)

p=—3E5"(0%+ pp) + @17p5 — LU +iALZ]

(26)

v=v"+pVP+3p* VP +3p"V 0 + o5 @5 + p?p @5 + p° D5

Weyl Tensor Components:
\PO = ‘Pl = 0
¥, =—${"p*+20{0p%

Uy =VPp’+ U0+ + 00’5 +20° 505 +3p* 05 (27)

V=V p+ WP +3W P +50 P p +iW P’

+pp*Wi+ pp Wi+ pp ¥+ pp W
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Ricci Tensor Components:
A=Bgy=Dp, = =0
D, =dPp%p’
®,, p®(3)+p2p2¢(4)+p2p3¢(5) (28)
Oy = pﬁ[—5‘3‘l'§2’ +A2 ] 1500 Y + AN (] + o210 FE05]
— (8202 + 1A% W]~ p25% Re 8°05) + p* Y[ 2id V505
- pp 121058251 - p*5 2105V 805 ]+ p° 5[40 (P|805 ]
Metric Variables:
X=£=0
éo=Lp
&=2Pp
w=7[1+i25]-ips°S

(29)

U=—rid®+ U’ +3p 0 + 35080~ g5 (Y
Differential Operators and Tetrad:

d

or

a3 0
=—+U—
ou or

k*=(0,1,0,0)
n®=(1,U,0,0)
ma = (§09 w, fla 0)

o=(no-L. L)
2P’ 2P
1

0, —
(00 ZP) .

1 w 1 _ @
U1 UL-—-),—| UL-——
= (-utgp(ve-2) 35(vr-9))

with respect to the coordinates (i, r, £, 7).

(30)
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Line Element:

ds’=—(2P%pp) " di df +2(k, dx*)(n, dx®)
where _
L L
ko dx® = du—-—df ——
adx®=du—— ¢ 2Pd§
(31)
L

ny, dx® = - Uk, dx“+dr—2Pp_

& -
di ——d
' 2Pp§

6. DISCUSSION

It is now a simple matter to verify the form invariance of this “solution”
under the remaining freedom in the choice of coordinate system and tetrad.
Let us first note that we can easily calculate from their definitions that under
such a permissible transformation, given by equations (13)-(16), we have

X'=@7 e Z—? X
Ey—L'p'=e"? :®(§o—ﬁL)+§ (& -2pﬁ)]
i-2p5 = | L (e 20)
g&=e' % &
o' = (1+iZp) =07 *? [w —P+iSp) - r(&— L) :;@
—r(&-2Pp)° 1;;)] (32)

This shows the invariance of most equations in (29). To show that all of
equations (26)-(31) are invariant, we simply verify that each of the remaining
equations is weighted. A list of the weights involved is given in Table II.
These weights can be either calculated directly from known transformation
rules of the Newman-Penrose variables or transcribed from the appropriate
table in Ludwig (1988) using equation (22).

The results of the last section turn into an actual solution of the field
equations once we solve the “reduced field equations” for the initial data
given by (12). The latter equations are obtained by putting the expressions
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Table 11

Variable w S Variable w S
r -1 0 v, -1 -1
K 2 1 v, -2 -2
o 1 2 A 0 0
7 0 -1 @0 2 0
€ 1 0 @, 1 1
T 0 1 Dy, 0 2
A -1 -2 @, 0 0
p 1 0 ®,, -1 1
o -1 0 d,, -2 0
v -2 -1 y—1n® -1 0
¥, 2 2 B—p&° 0 1
¥, 1 1 a—p(F—4% 0 -1
v, 0 0 U+ra® -2 0

for ®@,,, ®,,, and P,, of (28) equal to an appropriate source. For example,
the reduced equations for vacuum are

o-0, SbP-0,  SWEH-RHP =0 ()

Further conditions on the initial data may arise as a result of insisting on
a specific Petrov type or on some other geometrical property of the solution.
Initial data for the Kerr-Newman solution are

i - ia - N
P=250+L),  L=-5f ReWl=-m,  &=3 (34)
where a, m, and e are constants. For the NUT solution we can take

P=$(l+§{), L=1J_92—(g—§>, Re¥{V=-m, =0 (35)
where a and m are constants. The actual solutions may now be written
down immediately by substituting these initial data into (26)-(31). In
particular, the respective line elements are obtained from (31).

The formalism can be readily generalized to complex spacetimes by
letting real quantities take on complex values and by letting a variable and
its complex conjugate become independent. This complexification will allow
us to reexamine, from a different point of view, the complex coordinate
trick of Newman and Janis (1965) that yields the Kerr solution from the
Schwarzschild and Demianski (1972) generalization thereof. This will be
done elsewhere.
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