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Algebraically Special Spacetimes 
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The Newman-Penrose formalism for algebraically special spacetimes, with or 
without twist, is recast in terms of weighted quantities defined at conformal null 
infinity J+. Weighted differential operators, also defined at J+, are introduced 
that are special cases of those defined in a recent extension of the Geroch-Held- 
Penrose formalism. The "solution," including spin coefficients~ Weyl tensor 
components, and reduced equations, is expressed rather concisely in terms of 
these weighted variables and operators. Its form invariance under the remaining 
freedom in the choice of tetrad and coordinate system now becomes evident. 

1. INTRODUCTION 

Partia! "'solutions" to Einstein's field equations and corresponding 
reduced gravitational field equations (that is, the equations yet to be solved 
after certain radial integrations have been made) were obtained for algebrai- 
cally special spacetimes with twisting rays about two decades ago by various 
authors. For vacuum they were derived by Kerr (1963), Debney et al. (1969), 
Robinson et  a l .  (1969), and Talbot (1969). Their results were generalized 
by Lind (1974) and Trim and Wainwright (1974) to the nonvacuum case, 
but only for a certain class of  Ricci tensors. I considered a slightly bigger 
class of Ricci tensors (Ludwig, 1978), but the "solution" reduced to that 
of  Trim and Wainwright (1974). 

The "solution" obtained, including the metric, spin coefficients, and 
components of the Weyl and Ricci tensors, is a fairly messy combination 
of  integration "constants" and their nonradial derivatives. By just looking 
at the results, their invariance under the remaining freedom in the choice 
of  frame, i.e., under a certain combined transformation of the spinor dyad 
(or, equivalently, the tetrad), the coordinate system, and the initial data is 
far from obvious. I intend to reformulate these results in terms of properly 
weighted scalar functions and differential operators defined at conformal 
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null infinity. In particular, the differential operators, when acting on properly 
weighted scalar functions, transform as properly weighted quantities under 
arbitrary diagonal transformations (Ludwig, 1986, 1988) of the spinor dyad, 
transformations which include both Lorentz and conformal ones. These 
operators are actually special cases of those defined in a recent extension 
of the Geroch-Held-Penrose formalism (Ludwig, 1988). The present refor- 
mulation makes it possible to exhibit the "solution" not only in a very 
concise form, but also in a way that makes its variance under the remaining 
choice of frame self-evident. 

The "solution" was obtained in Ludwig (1978) with the aid of Penrose's 
conformal technique (Penrose, 1968). By rescaling the metric, the spacetime 
(M, gob) was transformed, subject to a number of assumptions, to an 
unphysical space (M, g~b) with boundary (a local J+). The frame, including 
spinor dyad, coordinate system, and conformal factor, was chosen at J+ at 
the outset. The Newman-Penrose equations (Newman and Penrose, 1962; 
Pirani, 1965) were then integrated along ingoing shear-free null geodesics 
and the results converted back to physical spacetime. All integration "con- 
stants" appeared as quantities defined on J+. By using the remaining 
freedom in the choice of frame, the twist X, assumed to be nonzero, was 
put equal to unity. In the present reformulation I reverse this choice and 
let 2~ have arbitrary values, including zero. 

The notation follows that of previous papers (Ludwig, 1978; 1986). 
Careted quantities refer to the rescaled space M, uncareted ones refer to 
spacetime M. Superscripts on a careted variable denote the appropriate 
coefficient in the expansion of that variable in powers of the conformal 
factor 1~; superscripts on an uncareted variable similarly refer to the 
expansion of that variable in powers of p and t~, where p is a suitable 
spin-coefficient. The usual symbols are used for the Newman-Penrose 
quantities (Newman and Penrose, 1962; Pirani, 1965). Their transformation 
properties under general Lorentz and conformal transformations are found 
in the literature (Ludwig, 1986). 

2. THE CHOICE OF FRAME 

The spinor dyad and conformal factor can be so chosen on J+ such that 

~o : ~o=0 ' &o= _ ~ O : l  ~Oln P, ~/o -~/~'~~ =2,-,!~~ l n P  (1) 

and 
~o = 0 (2) 

where P is any positive function on J+. Such a Type I frame (Ludwig, 1976, 
1978), which includes an associated Bondi coordinate system, is, however, 
inappropriate for considerations of twist. 
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More appropriate is a Type II frame, whose construction I now review. 
Starting with any Type I frame, we first perform a null rotation 

OtA = 0 A - -  Lt~A, ~ = L~, (3) 

with L so chosen that ~o, vanishes. The relations given by (1) are still valid 
for the new dyad, but 

Dropping all primes from now on, consider the congruence of null geodesics 
whose tangent vector at J+ is 

This congruence is clearly asymptotically shear free. 
Next, extend the Bondi coordinate system (u, ~', ~) of J+ associated 

with the Type I frame to all of h~/by demanding that these coordinates not 
change along the members of the null geodesic congruence. For the remain- 
ing coordinate take the conformal factor 12, which is so chosen that 

Re/3 = 0 (6) 

The twist E of the congruence is - I m  t3. We propagate the tetrad into the 
interior of )V/in such a way that 

~ =  ; =  ~-+~-=0 (7) 

are satisfied identically. In the physical spacetime M we use, instead, 
coordinates (u, r, if, ~), where r is related to f~ by the equation 

1 
~"~2 ~--~ - -  (8) 

r 2 - } -  ~ 2 

In Ludwig (1978), I "solved" the Newman-Penrose equations in such 
a Type II frame under the assumption that the above null geodesic con- 
gruence is not only asymptotically shear free, but shear free throughout the 
space, i.e., 

d = 0  (9) 

identically. It was further assumed that the tangent vectors to these null 
geodesics are repeated principal null vectors of the Weyl tensor, i.e., 

�9 o=qq  =0  (10) 

and that the Ricci tensor satisfies 

A=qbo0=0 (11) 
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The solution obtained depends on the initial data 

D~ 4HI) m(4) (12) P, L, ~". ~ 2 , "~ H 

The freedom in the choice of the original Type I frame is the (general- 
ized) Newman-Unti (Ludwig, 1976, 1978) freedom. When translated to a 
Type II frame this becomes, in the unphysical space/~, a coordinate change 

u ' = G ( u , ~ , f f ) ,  ~" = ~"(ff), ~" = ~"(ff), l-l' = Ofl (13a) 
where 

O--- G (---G,u) (13b) 

accompanied by the diagonal transformation 

diag(O-1/2e i*, O-1/2 e -i~ ) (13c) 

of the spinor dyad, where 

e4i~:d(/d~' (14) 
d~ l d~ 

The corresponding freedom in the physical spacetime is given by 

u'= G(u,  ~, ~), ~'= ~'(~), ~'= ~'(~), r '= |  (15a) 

for the coordinate system and the transformation 

diag(@ 1/2e ~, O-1/2e -i~ ) (15b) 

for the spinor dyad. The initial data must at the same time be changed 
according to 

P ' =  p o _  1 d~' 
d~ 

L ' = ( L + 2 P |  2~ 

Re @(1), = O - - 3  Re ~(21~ (16) 

11 - -  

3. WEIGHTED QUANTITIES 

If under the permissible change of frame given by equations (13)-(16) 
a quantity ~7 (u, ~', if) transforms as 

~7' = 0 w e2iS~ (17) 

we say that ~ is a properly weighted quantity with weights (W, S). Of 
course, the conjugate quantity then has weights (IV, -S) .  
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Next, let us define, on J+, properly weighted differential operators 
g o ,  -% ^ o 3c, Ac by 

go = go+ 2s~O+ ( W _  S)$ ~ 

~ 0  ^ 3r = $o_ 2s6O+ (W+ S)~ -~ (18) 

= 

They have respective weights (-1, 1), ( - 1 , - 1 ) ,  and (-1,0). Thus, for 
A 0 

example, if ~ is a scalar field with weights ( W, S), then 6c~ transforms as 
a weighted function with weights ( W -  1, S+ 1). 

The commutators of these operators can be worked out directly. They 
are given by 

^ ~ _A ,~ ^ 0  0 0 0 0 (6~6~ - 3~6~) r/= -2iXAcr/+ 7q[2SU~176 
A o  ^ o - ~  6r176 (19) 

(and the equation conjugate to the latter), with v ~ U ~ and X as defined 
in the next section. 

A 

The transformations of the spinor dyads, in both M and M, as given 
by equations (13c) and (15b), are special cases of a general diagonal 
transformation diag(a, d), whose consequences were discussed in depth in 
a recent extension (Ludwig, 1988) of the Geroch-Held-Penrose (GHP) 

A 

formalism. For weighted quantities of either space, M or M, we can express 
the weights W and S in terms of the more general weights defined by 

r/' = a rtiSd td% 7 (20) 

for an arbitrary diagonal transformation. The present formalism is a 
specialization of the extended GHP formalism of Ludwig (1988), albeit a 
different specialization for quantities defined on ~ / a n d  quantities defined 
on M. 

With the aid of equation (13c), we see that for weighted quantities 
defined on fiT/ we have 

W=-�89 
(21) 

S=�89 

i.e., W is the conformal weight and S is the spin weight (Ludwig, 1988). 
The operators of equation (18) are those of Ludwig (1988) when specialized 
to the particular diagonal transformation given by equation (13c). This can 
be readily established with the aid of equations (1), (7), and (21). The 
commutator equations, too, equations (19), follow from the more general 
ones given in that paper. 
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For weighted quantities defined in the physical spacetime M the weights 
(W, S) are given by 

W = � 8 9  
(22) 

S = � 8 9  

as is readily seen with the aid of  equation (15b). Thus, W is the boost weight 
and S the spin weight. In fact, the general formalism of Ludwig (1988) 
applied to quantities defined in M reduces to a special case of  the G H P  
(Geroch et al., 1973) formalism. It is a special case because the boost-rotation 
of  equation (15b) is restricted by equation (14). As a result, not only are 
the spin coefficients p,/z,  T, and ~-, properly weighted quantities, but so is 
the spin coefficient e. However, I will present the variables in M in Newman-  
Penrose rather than GHP notation, at the expense of having to deal with 
some variables which are not properly weighted. 

4. AUXILIARY QUANTITIES 

The "solut ion" of the field equations depends only on the initial data 
P, L, Re x~'),  and "-1," 11r which are functions of  the coordinates u, ~, and 
of J+. But it is advisable, for the sake of brevity, to introduce some auxiliary 
quantities. Although all of  these are quantities defined on J+, some of  them 
will not carry a caret, since they appear as coefficients in the expansion of  
some spacetime variable in terms of the spin coefficients p and iS. 

First let us recall from Ludwig (1978) that we may define the operators ^ 
-',0 AO ] .~0  go, $o, and ~o and the spin coefficients r , a , and (and their conjugates) 

by 

go= _L O_O__zp 0 
~u a~ 

~o=A 
Ou 

A 
~o = �89 In P 

Ao = _ ~ o  In P /x 

Although none of  these are weighted quantities, the equations themselves 
are. These operators and spin coefficients play their major role in the 
definition of the operators go, ~o, and ~o. 
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Next let us define 

U ~ = Re[ g~162 ~ - 2k ~ - 2go(~ o - 2~~ 

vo = g o(~.o _ 2~o)  + /2  o(~o _ 2ko)  
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(24)  

(and similarly for ~o). These are properly weighted quantities with respective 
weights ( - 1 ,  0), ( -2 ,  0), and ( - 2 , - 1 ) ,  as can be determined with the aid 
of  equations (13), (16), and (23). Note that ~ is the imaginary part of  - f i  
and therefore the twist of  the null geodesic congruence. 

Further, we define the following auxiliary quantities and their complex 
conjugates in terms of properly weighted quantities defined on J+. These 
auxiliary variables, which will appear  as coefficients in the  expansion of 
the variable whose name they carry, are themselves properly weighted. This 
is so since each term in their definition has the same weight. Table I gives 
a summary of these weights. For the conjugate variables the spin weight S 
changes to - S .  

Im ~r~) = R e ( - 2 E  U~ ^o-% 

�9 ", ^ 0  ~ , ~a) = _ i~ v ~ + ~o U o + iA ~6~ 

~o,~, (~  ~ 3 ~  = , - , ~ 2  

7t ;alt (1)~o~c XI?~ 4 )  = ~,, A 
- - j  g :it 2 I J c , ~  

ci) (3)__1~%?~(~) 
1 2  - -  2 t " c  x 2 

• ( 4 )  _ _  _ _ ~ 0 ~  (4)  
12  1 w c.X. 11 

~ ( 5 ) _  . % (4) 
12 - - 2 z ( a c Y - , ) ~ 1 1  

~4 2)= -~,~3~~ 
A A 

~Y(4 3) = --'~0~tTr (3)~'c~3 --'a- 4ialr ~2)$0c~ 
A A 

~ 0 a l r  (4) -4- 6 i ~ ~3 ) j0 Z ' t ' ]  4)  = - ~ , c ~ 3  - 

~45) = 24,~')(g~ 2 

- -  ~ 0 O h  (4 )  --I- ") ~ fl~ ( 3 ) ~ 0 ~ "  
~ I ' f ( b )  = U c " X " 2 1  - - ' r  ~ ' c  ~ '  

A A 
XIf (4c) : __ ~ 0 r  --I- A / t ~  ( 4 ) ~ 0 ~ "  

A 
xtr(4a)= �9 (5)-o 6/di)21 8cs 

(25) 
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Table I 

Quanti ty W S Quanti ty w S 

1 0 xlr (4) ~e,j (4) - 5  - - ]  x 3  ~ ~21  
~o, X - 1  0 dP(2]) - 6  - 1  

U ~ - 2  0 ~(4 ~) - 3  - 2  
~ ( l )  - 3  0 *(4 2) - 4  - 2  
~ ( 4 )  

11 - 4  0 W(43), W(4 '~) - 5  - 2  
$o - 1  - 1  ~I-t (4 4) , ~(4 b) ,-6 - 2  

v ~ - 2  - 1  ~(45), ~(4 c) - 7  - 2  

~I'~3 2) -3 -1 *~4 a) -8 -2 
~(3) ,~(3) - 4  - 1  3 ~ ~21  

5. T H E  " S O L U T I O N "  

One  can exhibi t  the  " s o l u t i o n "  o f  the  field equa t ions  for  a lgebra ica l ly  
specia l  space t imes  in a ra ther  concise  m a n n e r  in terms o f  these aux i l i a ry  
quant i t ies ,  which  themse lves  d e p e n d  only  on the ini t ia l  data ,  def ined on  
J+,  and  the i r  der ivat ives  t angent ia l  to J+. A l though  this " s o l u t i o n "  has been  
o b t a i n e d  e l sewhere  (Tr im and  Wainwr igh t ,  1974; Ludwig,  1978), it takes  
cons ide rab l e  effort to t ranscr ibe  it into the p resen t  formal i sm.  The resul ts  
are  as fol lows.  

Spin Coefficients: 

0 : K  : o : e =  ~ = ' / ' - - - - A  

1 

P = r - i E  

=p(C-~176 
- -~o ( 2 6 )  

fl = pot 

_ _ ~ , o  In  it ,  1 ~2~t~/,(1)..l_ ~2,.~0~(4) -- 2t.a z - - ~ p  x 2 - - / J  P '"~l l  

_ I ^ ( I )  2 - ( 4 )  2 -  - 0 . ^0  I~----~X~'2 (p +pp)+dPl l  p p - p [ U  +lAe]~ ] 
o - -  ~r,(2).a 1 2aD(3)2._1 3xD(4)_L~7~d.~(3 ) -  2-, .*,(4)-- 3-...~(5) 

/ . t :  p --i-p~x, 3 _ _ ~ y  I 3  __~/.~ x 3  __p~t l .~21  - I - p  p~l-~21 - t - p  pq-n21 

Weft Tensor Components: 

Wo = xt'l = 0 

~I/2 = _ _ ~  (21 ) p 3  _.[_ 2(I) ~4)p3# 

aYJ2"3=at~'~2)PX+'tIt(33)p3"a-'lr(4)"4"4-d'~(3)=2=+2p3p~(24)+3pafir t-' --'-t '21 t-' t '  ( 2 7 )  

,ti.r 4 ----- ,t.i.r(l) p + ,tit(z) 2 .4_  laD(3) ~3.4..!,tit(4) 4_l__lltlt(5) 5 
x 4  p n 2 1 4  ~J ~ 3 x 4  p ~ 4 x 4  p~ 

+ ~ p 2 W ~ + -  3 b - 4 ~ - 5 d pp "~r4 + pp W 4 + pp TI'f 4 
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Ricci Tensor Components: 

A = ~oo = (1)ol = qbo2 = 0 

(4) 2~-2 
( I ) l  I = (I) 11 /- / p 

(I)12 - -  2 ,~.m (3) -I.- ~2  T ,2m(4)  -1- ~2  F-,3r (5) (28) 
~ p  p,-.~rl2 ~ p  /.,, "-x.-12 / / J  ~ "~12 

(I)22 __ ~,r, F__ ~0.~lt (2) ~ ~ 0 , ~ r  (1)q 2 7. r ~ 0 t ~  (3) _t_ 1 ~ 0 t t x  (4)" I 3 -  - (3 )~0  
-- IJIJI U c X 3  " ~ ' a C ' l "  2 I - - / ~  / / I -~ 'c"J r l2  " 2 t ' a c W l l  d " [ -P  p [ 2 I ( I ) 1 2  t~c~ ' ]  

~,r.21- ~0,4~ (3) - -  1 ~ o m  (4)]  _ p 2 f i 2  ^0 (4) 3 - 2  - (4) Ao 
- -  P'/-' I_ '-' c'*" 21 --2~'ac"~"1i  / R e  ~c ( I )21  - ~ p  p [ 2 / ( I ) 1 2  t~c'Y. ] 

- 3  �9 (3) "0  2 -3  �9 (4) ~0 3 - 3  (4) ~0 2 - p p  [2t~21 8 c ~ ] - o  p [2t~2, 8~E]+p p [4(I). I~cE[ ] 

Metric Variables: 

X = ~ 2 = 0  

~o = L~ 

~1 ~'~ 2 P f i  ( 2 9 )  

^o to -- "~~ + iX#]  - ifiS~E 

U__ _r/~O+ o 1 ^ ( 1 )  1 - ~- (1) - (4) 
U -~-~flXtr 2 "} -2 f l~2  - - f l P ( ~ l l  

Differential Operators and Tetrad : 

0 
D ~ -  

Or 

O 0 0 
6 =-- ~:0 - - - ~ -  to - - -~-  ~1 - -  

Ou Or O~ 

a =0-2-+ u -~  
au ar 

k ~ =(0,  1 , 0 , 0 )  

n '~ = (1,  U, 0, 0) (30) 

ma = (~r to, ~r 

go= 1,o, 2P'  ~ 

no = - u ,  1,~-~ u L -  _ , u L -  

with  respect  to the  c o o r d i n a t e s  (u,  r, ~, ( ) .  
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Line Element: 

where 
ds 2 = - (  2p2pfi) -1 d~ d~+ 2( k~ dx")(  nb dx b) 

w o3 
nb dx b = - Uk~ dx a + dr - ~ d~ - ~ d (  

z r p  z r p  

(31) 

6. DISCUSSION 

It is now a simple matter to verify the form invariance of this "solution" 
under the remaining freedom in the choice of coordinate system and tetrad. 
Let us first note that we can easily calculate from their definitions that under 
such a permissible transformation, given by equations (13)-(16), we have 

�9 / " d  ' 
X ' = O  -1 e -2'~ - ~  X 

~o,- L' f i '= e2i~ [ O ( ~ o - f i L ) + ~  ( ~ l - 2 P f i ) ]  

d '  
~', - 2P'fi' = -~-~ J (~, - 2Pfi) 

s~ ~ = e4i~ d~' 
d~ ~2 

t o ' -  ~~ + i~'fi') = O- '  e 2i'~ [to - ~~ + i?~fi) - r(~o - Lfi) 
0 ln____._OO 

k Ou 

Oln 19] 
- r(~:l  - 2Pfi) - ~ 3  ( 3 2 )  

This shows the invariance of most equations in (29). To show that all of 
equations (26)-(31) are invariant, we simply verify that each of the remaining 
equations is weighted. A list of the weights involved is given in Table II. 
These weights can be either calculated directly from known transformation 
rules of the Newman-Penrose variables or transcribed from the appropriate 
table in Ludwig (1988) using equation (22). 

The results of the last section turn into an actual solution of the field 
equations once we solve the "reduced field equations" for the initial data 
given by (12). The latter equations are obtained by putting the expressions 
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Table II 

Variable W S Variable W S 

r -1 0 T" 3 -1 -1 
2 1 X!~ 4 - 2  - 2  

o- 1 2 A 0 0 
~" 0 - 1 qboo 2 0 
e 1 0 (~)01 1 1 
r 0 1 (:I)o2 0 2 
A -1 -2 qb n 0 0 
p 1 0 ~ 2  -1 1 
,u, -1 0 (~D22 -2 0 A 
v -2 -1 y _�89 -1 0 

~o 2 2 fl - ft~ ~ 0 1 
~l  1 1 a - - p ( ~ ~  ~ 0 -1  
xIt 2 0 0 U + rfi ~ -2  0 

for ~ u ,  1ff~12, and  (I)22 of  (28) equal  to an  appropr ia te  source. For  example,  
the reduced  equat ions  for v a c u u m  are 

I)(4) = O, ~O~t (1) ~O~lt (2) -- /~ O~t(1) 
11 V c X  2 "~-0,  L ' C r  3 ~,aCX 2 = 0  (33) 

Fur ther  condi t ions  on the init ial  data may arise as a result of  insis t ing on 

a specific Petrov type or on some other geometr ical  proper ty  of the solut ion.  
Ini t ia l  data  for the K e r r - N e w m a n  solu t ion  are 

1 i a -  ^ tI.l(4) 1 2 ( 3 4 )  P = ~ - ~  (1 + ~'r L = -~--fi ~, Re *(2') = - m ,  ~'11 = ~e  

where a, m, and  e are constants .  For  the N U T  solut ion we can take 

1 L = i a ( - ~ - ~ )  R e ~ l ) = - m ,  t~ (4)~-0  (35) 
P =  v ( l+f f~) ,  v/~ , --H 

where a and  m are constants .  The actual  solut ions may now be writ ten 
down  immedia te ly  by subst i tu t ing these init ial  data  into (26)-(31).  In  

par t icular ,  the respective l ine elements are ob ta ined  from (31). 
The formal i sm can be readily general ized to complex spacet imes by 

lett ing real quant i t ies  take on complex values and  by letting a variable  and  
its complex conjugate  become  independen t .  This complexif icat ion will allow 
us to reexamine ,  from a different point  of  view, the complex coordina te  
trick of  N e w m a n  and  Janis  (1965) that  yields the Kerr  solut ion from the 
Schwarzschild and  Demiansk i  (1972) genera l iza t ion thereof. This will be 
done  elsewhere. 
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